36. Trimesinsäure-triäthylester als Nebenprodukt bei der Elektrolyse von Bernsteinsäure-monoäthylester

von Fr. Fichter und Alfred Maritz1).

(2. XI. 38.)

Die klassische elektrochemische Synthese des Adipinsäure-esters aus Bernsteinsäure-monoäthylester I nach Alex. Crum Brown und $J.\ Walker^2$) ist von $L.\ Bouveault^3$) in Bezug auf Nebenprodukte durchgearbeitet worden. Unter diesen trat ein hochsiedender Ester der Formel $C_{15}H_{26}O_6$ auf, der als Triäthylester einer Tricarbonsäure $C_9H_{14}O_6$ aufgefasst wurde; doch gelang es nicht, die Struktur der Säure aufzuklären. Da uns diese Frage im Hinblick auf den Mechanismus der Elektrosynthese von Wichtigkeit erschien, wollten wir den Ester $C_{15}H_{26}O_6$ näher untersuchen, umsomehr, als $Fr.\ Fichter$ und $Jules\ Heer^4$) bei der Nachahmung der Elektrosynthese des Adipinsäure-esters durch Oxydation von Bernsteinsäure-monoäthylester mit Kaliumpersulfat ein etwas anders zusammengesetztes hochsiedendes Nebenprodukt, $C_{13}H_{22}O_6$, gewonnen hatten.

Wir erhielten nun in der Tat den von Bouveault entdeckten Ester; aber es ist nicht leicht, ihn in reinem Zustand darzustellen. Er muss vollständig von dem im Verlauf der Elektrolyse entstehenden Bernsteinsäure-diäthylester (Sdp. $_{15~\text{mm}}$ 104—105°) sowie vom Adipinsäure-diäthylester (Sdp. $_{14~\text{mm}}$ 130°) getrennt werden, was trotz des viel höheren Siedepunkts ($C_{15}H_{26}O_6$ Sdp. $_{10~\text{mm}}$ 195—205°) nur durch langwieriges Fraktionieren gelingt. Es tritt aber noch ein weiterer Stoff auf, den Bouveault anscheinend nicht beobachtet hat, und der die Reinigung des Esters $C_{15}H_{26}O_6$ erschwert. Beim Fraktionieren scheiden sich nämlich kleine Kryställchen aus, die nach dem Umkrystallisieren aus Essigester den Smp. 134—134,5° aufweisen und die der Analyse nach Trimesinsäure-triäthylester 5) V sind:

¹⁾ Auszug aus der Diss. Alfred Maritz, Basel 1939.

²) A. **274**, 48 (1893).

³) Bl. [3] **29**, 1043 (1903).

⁴⁾ Helv. 19, 151 (1936).

⁵⁾ Smp. 133—134,5°, Reformatski, H. 30, 280 (1898); 133—134°, W. Wislicenus, M. v. Wrangell, A. 381, 372 (1911).

Die durch Verseifung gewonnene Trimesinsäure schmilzt erst oberhalb 350° und sublimiert, ohne zu verkohlen.

4,110; 3,375 mg Subst. gaben 7,595; 6,260 mg CO₂ und 1,420; 1,130 mg
$$\rm H_2O$$
 C₉ $\rm H_6O_6$ Ber. C 51,42 H 2,88% Gef. ,, 50,40; 50,59 ,, 3,86; 3,74%

Der von *Bouveault* entdeckte Ester gab bei der Elementaranalyse etwas zu niedrige Kohlenstoffwerte; er zeigte auch nie einen scharfen, einheitlichen Siedepunkt.

Bei der Verseifung liefert er eine braun werdende Säure, die nicht krystallisieren wollte, und deren Untersuchung wir darum einstweilen ausgestellt haben.

Theoretisches.

Wie L. Bouveault festgestellt hat, unterliegt der Bernsteinsäuremonoäthylester bei der Elektrolyse nicht nur der Kolbe'schen, sondern auch der Hofer-Moest'schen Reaktion und liefert auf Grund der letzteren β -Oxypropionsäure-ester II und Acrylsäure-ester III.

I.
$$C_2H_5OOC \cdot CH_2-CH_2 \cdot COOH$$
 II. $C_2H_5 \cdot OOC - CH_2-CH_2 \cdot OH$ III. $C_2H_5 \cdot OOC - CH = CH_2$

Dem β -Oxypropionsäure-ester ist an der Anode Gelegenheit geboten, sich zu Formyl-essigester IV zu oxydieren; dieser aber erleidet nach den Beobachtungen von W. Wislicenus und W. Bindemann¹) leicht Kondensation zum Formyl-glutaconsäure-ester und zum Trimesinsäure-triäthylester V:

So erscheint die Entstehung dieses cyclischen Esters bei der Elektrolyse des Bernsteinsäure-monoäthylesters als eine natürliche Folge der wohlbekannten Oxydationswirkungen der Anode.

Formuliert man die Elektrolyse des Bernsteinsäure-monoäthylesters ohne Rücksicht auf die Konstitution der entstehenden Verbindungen mit empirischen Formeln, so bilden die drei Stoffe Adipin-

¹) A. **316**, 34 (1901).

säure-diäthylester, Bouveault-Ester und Trimesinsäure-triäthylester drei Stufen der Oxydation:

und beweisen damit die innige Verknüpfung der Kolbe'schen bzw. Crum Brown-Walker'schen Elektrosynthesen mit Oxydationsvorgängen.

Dass die eben vorgetragene Hypothese der Bildung des Trimesinsäure-triäthylesters brauchbar ist, haben wir durch elektrochemische Versuche bewiesen¹). β -Oxy-propionsäure-ester wurde in einer Mischung von 5 Teilen Methylalkohol und 1 Teil Wasser bei Gegenwart von Kaliumsuccinat an einer Platinanode oxydiert und gab eine kleine Menge von Krystallen, die nach Umkrystallisieren aus Essigester den Smp. 132° zeigten und somit mit dem Trimesinsäuretriäthylester identisch waren.

Basel, Anstalt für Anorganische Chemie.

37. Elektrochemische Oxydation von 5,5'-Azo-m-xylol (3,5,3',5'-Tetramethyl-azobenzol)

von Fr. Fichter und Raymond Gunst²).
(12. XII. 38.)

1. Einleitung.

Fr. Fichter und Wolfgang Jaeck³) haben bei der elektrochemischen Oxydation des Azobenzols I teils Kernhydroxylierung, teils Kernverknüpfung erzielt und in mässiger (durch Abbau begrenzter) Ausbeute p,p'-Azophenol (Phenol-<4-azo-4>-phenol) II neben Diphenyl-4,4'-bis-[<azo-4>phenol] III erhalten, wobei die Produkte Farbstoff-charakter aufwiesen:

Wir haben nun versucht, diese Reaktion, die man als eine der von $Fr.\ Goppelroeder^4$) erhofften elektrochemischen Farbstoffsyn-

¹⁾ Bei denen uns Dr. W. Schoenauer wirksam unterstützt hat.

²) Auszug aus der Diss. Raymond Gunst, Basel 1939.

³⁾ Helv. 4, 1000 (1921).

⁴⁾ Vgl. Verh. Naturf. Ges. Basel 31, 137 ff. (1920).